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This paper investigates the steady round laminar jet discharging into a coaxial duct
when the jet Reynolds number, Rej , is large and the ratio of the jet radius to the
duct radius, ε, is small. The analysis considers the distinguished double limit in which
the Reynolds number Rea = Rejε for the final downstream flow is of order unity,
when four different regions can be identified in the flow field. Near the entrance, the
outer confinement exerts a negligible influence on the incoming jet, which develops
as a slender unconfined jet with constant momentum flux. The jet entrains outer
fluid, inducing a slow backflow motion of the surrounding fluid near the backstep.
Further downstream, the jet grows to fill the duct, exchanging momentum with the
surrounding recirculating flow in a slender region where the Reynolds number is
still of the order of Rej . The streamsurface bounding the toroidal vortex eventually
intersects the outer wall, in a non-slender transition zone to the final downstream
region of parallel streamlines. In the region of jet development, and also in the
main region of recirculating flow, the boundary-layer approximation can be used to
describe the flow, while the full Navier–Stokes equations are needed to describe the
outer region surrounding the jet and the final transition region, with Rea = Rejε
entering as the relevant parameter to characterize the resulting non-slender flows.

1. Introduction
Confined jet flows are of both fundamental and practical importance. They are

present in numerous applications including ejector systems and gas-turbine combus-
tors. A prototypical example of such flows arises in axisymmetric ducted flows with
sudden expansions; the flow separates as it encounters the expansion, comprising
a jet stream surrounded by recirculating flow. In this geometrically simple configu-
ration, which is sketched in figure 1, the flow depends mainly on two parameters:
the Reynolds number of the incoming jet, Rej , and the expansion ratio, 1/ε, with ε
representing the ratio of the inner to the outer radii; the laminar jet remains stable
for values of the Reynolds number below a certain critical value. The purpose of
the present paper is to describe the resulting steady axisymmetric solutions in the
double limit of large Reynolds numbers (Rej � 1) and large expansion ratios (ε� 1).
The analysis considers in particular the distinguished limit Rejε ∼ 1, for which the
Reynolds number Rea = Rejε of the asymptotic flow emerging downstream from
the recirculating region is of order unity. In the computations, both uniform and
Poiseuille profiles will be considered for the inlet velocity profile. Also, the boundary
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Figure 1. A schematic of the confined jet flow.

conditions on the outer wall will include both non-slip and slip flow, the latter being
an appropriate symmetry condition to represent approximately the collective effect of
the other jets in array configurations of multiple jets. Before focusing on the problem
of interest, we review below some relevant results concerning the solution for round
laminar jets. Although stability is not the subject of the present paper, a brief account
of our current understanding of the stability of confined jets is also provided.

The flow field in unconfined jets (ε = 0) emerging normal to a wall depends only
on the value of Rej . A uniformly valid exact solution of the resulting flow is not
available. If Rej ∼ 1, one needs to integrate the full Navier–Stokes equations to
describe the flow field near the mouth of the pipe, i.e. at distances from the orifice
of the order of its radius. The flow field has been described in jets with Rej � 1.
In this case, there exists a slender jet region aligned with the pipe where the velocity
is of the order of the inlet velocity, and where the momentum flux is constant
in the first approximation, because the velocity outside is much smaller. This jet
develops downstream as it entrains outer fluid. The boundary-layer approximation
is applicable to describe the jet flow, whereas the full Navier–Stokes equations are
necessary to study the motion outside. At distances from the entrance much larger
than Rej times the pipe radius, the flows in the jet and in the outer region become
self-similar. In the jet region, the solution approaches that postulated by Schlichting
(1933), corresponding to a point source of momentum. The jet is seen to entrain outer
fluid with a radial volume flux per unit length equal to 8πν , with ν denoting here the
kinematic viscosity of the fluid. This constant entrainment rate, independent of the
jet Reynolds number, is associated with a Reynolds-number-independent self-similar
solution in the outer Navier–Stokes region, a result due to Schneider (1981), who
later used a multiple-scale technique to account for the slow momentum decay that
occurs in the jet in the presence of the outer flow (Schneider 1985). At large distances
from the inlet the jet has lost a significant fraction of its initial momentum, but is
still slender, and continues to entrain outer fluid with the same constant rate 8πν,
at distances from the inlet smaller than Rej exp(Re2

j /15.28) times the pipe radius. At
these distances, the jet merges with the outer flow, giving rise to a large recirculating
toroidal eddy whose description necessitates numerical integration of the full Navier–
Stokes equations. The associated parameter-free problem has not been investigated,
although an approximate description, obtained by extending the near-field asymptotic
expansion outside its range of applicability, is given in Schneider (1985), with results
in agreement with experimental observations (Zauner 1985).
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The flow-field structure in confined jets is drastically different from that described by
Schneider (1985). The problem has been investigated by several authors, although the
limit of large expansion ratios studied here has not been thoroughly considered before.
For values of the jet Reynolds number sufficiently larger than unity, the resulting
steady symmetric jet becomes slender, with a structure that, in most of the flow field,
can be investigated with the boundary-layer approximation. Use of appropriate scales
then enables the problem to be written in a dimensionless form independent of the
Reynolds number. The boundary-layer description of confined jet flows was attempted
by Kumar & Yajnik (1980), who employed an expansion in eigenfunctions of the
Poiseuille flow to approximately solve the planar sudden-expansion problem. More
extensive boundary-layer solutions were computed by Acrivos & Schrader (1982)
and Milos & Acrivos (1986) for both planar and axisymmetric configurations with
different expansion ratios. They found that, while solutions can always be obtained
for parabolic velocity profiles, the solution with a uniform inlet profile may only
exist for expansion ratios above a critical value, when the pressure gradient becomes
singular near the reattachment point. This intriguing characteristic of confined jets
was further investigated by Milos & Acrivos (1987), who performed integrations of
the Navier–Stokes equations for values of the expansion ratio approaching the critical
value. Although their analysis was restricted for simplicity to a planar configuration
with slip flow on the outer boundary, as corresponds for instance to an infinite cascade
of equally spaced jets, their computations clearly demonstrated that the failure of
the boundary-layer approximation for small expansion ratios is associated with the
existence of non-slender recirculating regions in these large-Reynolds-number flows.

Acrivos and coworkers (Acrivos & Schrader 1982; Milos & Acrivos 1986) also
uncovered a subtle point concerning the use of the boundary-layer approximation
for the description of the sudden-expansion recirculating flows considered in their
work. The effect of viscosity was not able to arrest the recirculating fluid that moves
upstream, giving rise to the existence of a non-slender turnaround inviscid region
in the vicinity of the backstep. When solving the sudden-expansion flow with the
boundary-layer approximation, non-zero velocities must be considered in general at
the backstep wall to ensure matching with the backstep region. The presence of
this so-called collision region is a complicating characteristic of the boundary-layer
description that emerges in other slender large-Reynolds-number flows when reverse
flow is present (Klemp & Acrivos 1976; Brady & Acrivos 1982).

In the double limit ε � 1 and Rej � 1 with Rea = Rejε ∼ 1, which we analyse
here, four different regions can be identified in the flow field, as indicated in the
sketch of figure 1. Near the entrance, there is a slender region (J) of jet development
with a length lj of the order of Rej times the jet radius εa. The jet entrainment
induces a motion of the surrounding fluid located near the backstep, as in the case
of unconfined jets studied by Schneider (1981). Farther downstream, there exists a
main recirculating region (M in the schematic), where the motion is determined in the
first approximation by the momentum flux of the incoming jet. The velocities in this
region are ε times the inlet jet velocity, while the corresponding Reynolds number
remains of the order of Rej . In this slender region M, with a characteristic length lm
equal to Rej times the confining pipe radius a, there is a recirculating eddy that can
be described at leading order with the boundary-layer approximation. Downstream
from this eddy the flow approaches an asymptotic parallel flow, determined by the
mass flux of the incoming jet, with characteristic velocities that are ε2 times the
inlet jet velocity and with a characteristic Reynolds number given by Rea = εRej .
Clearly, since the asymptotic flow velocity is a factor ε smaller than that found in
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M, the description of the recirculating eddy in the limit ε→ 0 must show at leading
order a stagnant solution downstream from the eddy end, with non-zero velocities of
relative order ε appearing downstream only at the following order in the asymptotic
development.

The streamlines of the slender recirculating eddy of length lm = Reja are aligned
with the axis, except in non-slender boundary regions of characteristic length a located
at both ends (O and T in the schematic). In the outer region O surrounding the
incoming jet, the streamlines deflect towards the axis forced by the jet entrainment. If
Rea is of order unity, which corresponds to the distinguished limit εRej ∼ 1 considered
here, then the length of jet development lj = Reaa and the length of the non-slender
region O are comparable; this is the case represented in the schematic of figure 1. The
leading-order solution in this outer region O, and also in the final transition region T,
will be described for various values of Rea ∼ 1, with the extreme cases Rea � 1 and
Rea � 1 also being considered. The downstream asymptotic forms of the solutions
for the regions O and J provide in particular the velocity profile for the integration
of the boundary-layer equations in the main recirculating region; no turnaround, or
collision, region is found at the backstep in the analysis of sudden expansions with
ε� 1.

The stability analysis of confined jets should provide, in particular, the maximum
value of Rej for which the steady laminar solution remains valid. Much of the stability
research on confined jets has been devoted to the case of plane sudden expansions.
For instance, Durst, Melling & Whitelaw (1974) and Cherdron, Durst & Whitelaw
(1978) studied this problem experimentally, and found that symmetric solutions can
only exist for values of the Reynolds number below a certain critical value. For larger
values of the Reynolds number, steady asymmetric solutions appear, a result that was
confirmed in the numerical works of Durst, Pereira & Tropea (1993) and Allerborn et
al. (1997). Recent contributions regarding the symmetry-breaking bifurcation include
that of Rusak & Hawa (1999), who carried out a weakly nonlinear analysis of the
bifurcation, and that of Hawa & Rusak (2000), who studied the effect of a slight
asymmetry of the channel geometry on the flow behaviour.

The symmetry-breaking bifurcation was also encountered in the numerical and
experimental work of Fearn, Mullin & Cliffe (1990), who investigated a plane sudden
expansion with expansion ratio 1 : 3. They obtained a critical Reynolds number
(based on the jet width) equal to 82, a result later verified by the linear stability
analysis of Shapira, Degani & Weihs (1990). For even larger values of the Reynolds
number, the experimental evidence indicates that the flow becomes time-dependent,
a behaviour that Fearn et al. (1990) and Durst et al. (1993) found to be associated
with three-dimensional effects. The dependence of the critical Reynolds number of
the symmetry-breaking bifurcation on the expansion ratio was studied in the more
recent numerical works of Battaglia et al. (1997) and Drikakis (1997). It was found
that reducing the expansion ratio tends to improve the stability of the symmetric
solution; the critical Reynolds number decreases with increasing expansion ratios.
The interplay of viscous dissipation and convection of perturbations for increasing jet
Reynolds number is discussed in detail by Hawa & Rusak (2001), who combined a
bifurcation analysis and a linear stability study of the sudden expansion with careful
direct numerical simulations of the problem.

The stability of axisymmetric free jets was addressed in the early experimental work
of Reynolds (1962). Steady solutions were found for Reynolds numbers (based on
the jet diameter) below about 300. Confinement does not greatly affect this critical
value; in a free round jet the local Reynolds number remains constant with axial
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distance (Schlichting 1933), causing jet stability in sudden expansions to remain
roughly independent of the expansion ratio. For instance, in the experimental and
numerical work of Macagno & Hung (1967), for an expansion ratio 1 : 2 steady
solutions were found for jet Reynolds numbers at least as large as 200.

Although the stability analysis of unconfined round jets was undertaken early by
Batchelor & Gill (1962) and by Mollendorf & Gebhart (1973), much remains to
be learnt about the stability of confined round jets. The stability behaviour can be
expected to be different from that described above for plane jets. The experimental
results for turbulent jets in sudden expansions of Nathan, Hill & Luxton (1998) suggest
that, while the steady axisymmetric solution in planar jets undergoes a symmetry-
breaking bifurcation to another steady solution, round jets may bifurcate to unsteady
asymmetric solutions, in which the jet precesses about the axis in a swirl-like motion.
Although this type of behaviour is anticipated by Battaglia et al. (1998), careful
evaluations of the critical Reynolds numbers associated to this bifurcating mode are
still not available. Another aspect of the problem in need of further research concerns
the relationship between the stability characteristics of confined and unconfined jets.

2. Characteristic scales and problem formulation
We consider here the confined laminar jet formed when an incompressible fluid

of density ρ and kinematic viscosity ν flows through a pipe of radius εa into a
much larger coaxial pipe of radius a, a configuration sketched in figure 1. The
momentum and mass fluxes of the incoming jet are, respectively, J =

∫ εa
0

2πρru2
i dr

and G =
∫ εa

0
2πρrui dr , where r is the radial distance to the axis and ui is the incoming

velocity distribution. In our analysis, we shall assume that the jet Reynolds number
Rej = (J/ρ)1/2/ν is much larger than unity. Furthermore, attention is restricted to
cases with large expansion ratios (ε � 1), for which different distinguished regions
can be identified in the flow field sketched in figure 1. In the following discussion
of characteristic scales, the variable x denotes the axial distance measured from the
entrance, u and v are the axial and radial velocity components and p denotes the
pressure, all variables being expressed in dimensional form.

Close to the entrance, the outer confinement exerts a negligible influence on the
jet, which thereby behaves as an unconfined free jet, with a momentum flux that
remains constant in the first approximation. In this jet development region, denoted
by J in figure 1, the velocity is of order uj = (J/ρ)1/2/(εa) and the jet radius is of
order εa. An order-of-magnitude balance between the viscous terms, νuj/(εa)

2, and
the convective terms, u2

j /lj , in the jet momentum equation yields lj = Rejεa for the
characteristic length of this initial region of jet development. Clearly, the condition
that the jet Reynolds number Rej be large ensures that the resulting jet is slender,
and can consequently be described in the boundary-layer approximation. Further
downstream, the solution in the jet approaches the Schlichting solution (Schlichting
1933), with characteristic values for the local jet radius εax/lj and axial velocity ujlj/x
that follow from the condition of constant momentum flux and from the balance
between viscous forces and convective terms in the momentum equation. The jet
volume flux increases with distance due to the entrainment of outer fluid, with a
radial volume flux per unit length 2πrv of order ν that decreases towards the constant
value 8πν in the self-similar Schlichting region.

The jet therefore acts as a volumetric line sink that induces the motion of the
surrounding fluid located near the backstep wall between the jet and r = a (O in the
figure), with axial and radial velocities of order uo ∼ ε2uj and vo ∼ ν/a at distances
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x ∼ lj . In the distinguished limit Rea = Rejε ∼ 1, the outer region O is non-slender, i.e.
lj ∼ a and uo ∼ vo. The description of the associated velocity field requires integration
of the full Navier–Stokes equations, with Rea entering as a parameter in the formu-
lation. On the other hand, if Rea � 1, then the streamlines remain almost parallel to
the axis in O for x ∼ lj ∼ Reaa, where the flow can be described with the boundary-
layer approximation, except in the small non-slender region of streamline deflection
corresponding to x ∼ a. In the opposite limit Rea � 1, the length of jet development
satisfies lj � a, so that to study the fluid motion in O at distances x ∼ a one can use
the constant jet entrainment at the axis 8πν corresponding to Schlichting solution.

Farther downstream from the entrance there exists a much larger region (M in the
schematic) characterized by a momentum exchange between the jet and the outer re-
circulating fluid. Correspondingly, the characteristic axial velocity in this main region,
um = (J/ρ)1/2/a = εuj , follows from the condition J ∼ ρu2

ma
2. Note that this condition

of momentum exchange also implies that the characteristic Reynolds number in M
is of the order of the jet Reynolds number, i.e. uma/ν = Rej . On the other hand,
the balance between the viscous term νum/a

2 and the convective term u2
m/lm in the

momentum balance equation yields lm = Reja for the characteristic length of the
recirculating region, whereas the continuity balance um/lm ∼ vm/a leads to a charac-
teristic radial velocity in this region vm = ν/a ∼ um/Rej . These characteristic values
um, vm and lm, together with the radius a and the characteristic pressure variation ρu2

m,
are used below as scales in writing the conservation equations in dimensionless form.
As shown below, in the limiting case Rej � 1 considered here, these equations reduce,
with errors of order Re−2

j , to the well-known boundary-layer equations. Note that, in
the case of unconfined jets investigated by Schneider (1985), one needs a jet length of
order εaRej exp(Re2

j /15.28)� lm for the momentum to decay to negligible values.
At the rear end of the recirculating region the dividing streamsurface opens up and

eventually intersects the outer wall. The flow downstream rapidly approaches either
Poiseuille flow (if a non-slip condition is employed at r = a) or a uniform flow (if slip
flow is considered). Mass conservation requires that the characteristic axial velocity
in this asymptotic downstream region be of order G/(ρa2) ∼ ε2uj ∼ εum, and that
the corresponding asymptotic Reynolds number be Rea = Rejε. Transition between
the recirculating flow and the final downstream parallel flow takes place in a short
region (denoted by T in figure 1) of characteristic length Reaa where the velocity
is already of order ε2uj , and where the local Reynolds number is Rea. As in region
O, the description of the flow field in T requires integration of the Navier–Stokes
equations, with Rea entering as a parameter.

The scaling analysis can be extended to estimate the pressure variations taking place
in the different regions. Thus, in the boundary regions O and T the pressure variations
are of order ρε4u2

j , much smaller than the axial pressure differences found along the
main region M, of order ρε2u2

j . On the other hand, since the initial momentum per
unit volume in the jet is of order ρu2

j , the pressure differences in O are much too
small to affect the development of the jet at leading order. Therefore, in region J
the velocity field can be computed using the boundary-layer approximation with the
pressure gradient neglected when writing the axial momentum equation. The radial
pressure differences across the jet, of order ρu2

j /Re
2
j , can be determined in region J by

integrating the radial component of the momentum equation once the velocity field
has been computed with the boundary-layer approximation.

The existence of four distinguished regions is a direct consequence of the large
expansion ratio considered here; the boundary regions J, O and T merge with the
main recirculating region M in configurations with ε of order unity. In the jet region,
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and also in the main recirculating region, the condition Rej � 1 assumed here suffices
to guarantee that the flow field is slender, and that it is amenable to a boundary-layer
description. On the other hand, the solution in the non-slender regions O and T
requires integration of the full Navier–Stokes equations, with Rea = εRej entering as
a parameter in the formulation. The following four sections deal with the leading-
order solution corresponding to regions J, O, M and T, respectively. The analysis of
the main region will be extended to account for the first-order corrections, and the
results will be compared with integrations of the full Navier–Stokes equations, which
are written in non-dimensional form below.

Using as scales for the different flow variables those corresponding to the main
recirculating region, the governing equations take the dimensionless form

∂u

∂x
+

1

r

∂(rv)

∂r
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂r
= −∂p

∂x
+

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

Re2
j

∂2u

∂x2
, (2.2)

1

Re2
j

(
u
∂v

∂x
+ v

∂v

∂r

)
= −∂p

∂r
+

1

Re2
j

∂

∂r

(
1

r

∂(rv)

∂r

)
+

1

Re4
j

∂2v

∂x2
, (2.3)

where r = r/a, x = x/(Reja), u = u/um, v = v/vm, and p = p/(ρu2
m). The boundary

conditions at x = 0 are

0 6 r 6 ε: u = ε−1Ui, v = 0 (2.4)

and

ε < r 6 1: u = v = 0. (2.5)

According to the scaling employed here, the jet velocity at the entrance, u = ε−1Ui, is
of order 1/ε. The function ui/uj = Ui(r), of order unity, gives the normalized shape
of the inlet velocity profile, with limiting cases of practical interest being the uniform
velocity distributionUi = π−1/2 and the fully developed profileUi = (3/π)1/2[1−(r/ε)2].
Note that the boundary condition (2.4) is only appropriate for the cases Rej � 1
considered here. In general, perturbations to the flow in the pipe upstream from the
exit orifice should be accounted for, but these perturbations become negligible when
the Reynolds number in the pipe is sufficiently large.

For x > 0 the solution must satisfy the symmmetry condition at the axis

r = 0: ∂u/∂r = v = 0. (2.6)

Additional boundary conditions are, for x > 0,

r = 1: u = v = 0 (2.7)

if non-slip flow is assumed at the outer wall and

r = 1: ∂u/∂r = v = 0 (2.8)

for slip flow. As an additional boundary condition, far downstream the flow must
approach either the Poiseuille profile for non-slip flow or a uniform flow with slip:

x� 1:

{
u = (2go/π)(1− r2)ε, v = 0 (for non-slip flow)
u = (go/π)ε, v = 0 (for slip flow)

(2.9)

with go being a constant of order unity that depends on the shape function Ui.
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Relevant values corresponding to uniform flow and to Poiseuille flow are, respectively,
go = π1/2 and go = (3π)1/2/2. In terms of the variables defined here, the momentum
flux of the inlet velocity profile (2.4) is seen to satisfy

∫ ε
0

2πrε−2U2
i dr = 1, whereas its

associated mass flow rate, G, gives

G

ρ1/2J1/2a
=

∫ ε

0

2πrε−1Ui dr = goε. (2.10)

Aside from the shape function Ui, the solution depends only on the expansion ratio
ε and on the jet Reynolds number Rej .

It is worth pointing out that the present analysis is only applicable to configurations
in which the outer duct is longer than the resulting recirculating region, yielding flow
fields like that sketched in figure 1. Since in this case the pressure at the exit section is
equal to the ambient pressure, the duct length enters in the problem by determining
the pressure level, but it is otherwise irrelevant. The description given below is no
longer valid when the computed recirculating region is shorter than the duct. Then,
fluid enters the duct from outside, giving a complicated non-slender flow pattern in
the duct, whose description is outside the scope of the present paper.

3. The jet region
The scalings previously identified for the region of jet development, namely, r ∼ εa,

x ∼ lj , u ∼ uj and v ∼ ν/(εa), yield X = x/ε, R = r/ε, Uj = εu, and Vj = εv
as appropriate rescaled variables to analyse the jet region J. Introduction of these
variables allows (2.1) and (2.2) to be written, with small relative errors of order Re−2

j ,
in the form

∂Uj

∂X
+

1

R

∂(RVj)

∂R
= 0, (3.1)

Uj

∂Uj

∂X
+ Vj

∂Uj

∂R
=

1

R

∂

∂R

(
R
∂Uj

∂R

)
, (3.2)

while the radial momentum balance, which is written below in (3.11) in terms of
the jet variables, determines the small pressure changes that occur across the jet.
Appropriate boundary conditions for this boundary-layer problem are

X = 0

{
0 6 R 6 1: Uj = Ui(R)

R > 1: Uj = 0,
(3.3)

X > 0

{
R = 0: ∂Uj/∂R = Vj = 0
R →∞: Uj = 0.

(3.4)

As previously discussed, the pressure differences that appear in the surrounding region
O are too small to affect the jet motion in the first approximation, so that the axial
pressure gradient is absent in (3.2).

The numerical integration of this problem for a given initial velocity profile Ui(R)
gives the evolution of the jet, which spreads downstream as it entrains outer fluid.
The integration determines in particular the radial entrainment velocity by the jet,
(RVj)R=∞ = −Φ(X), so that 2πΦ(X) corresponds to the radial volume flux entrained by
the jet per unit length. Correspondingly, the jet volume flux

∫ ∞
0

2πRUj dR continuosly

increases, from its initial value
∫ 1

0
2πRUi dR = go, according to the entrainment law

d

dX

(∫ ∞
0

2πRUj dR

)
= 2πΦ(X), (3.5)
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obtained by radial integration of (3.1). Similarly, from the above system of equations
it is easy to show that the momentum flux∫ ∞

0

2πRU2
j dR = 1 (3.6)

remains constant.

The rate of entrainment Φ(X) corresponding to an initially uniform velocity profile
Ui = π−1/2 and that of a fully developed parabolic profile Ui = (3/π)1/2[1 − R2]
are shown in figure 2. As expected, both curves asymptotically approach the value
Φ(X) = 4 as the jet evolves to the self-similar Schlichting solution for increasing
values of X, a transition that occurs at moderately small values of X, of order 0.1.
On the other hand, for X � 1 the entrainment rate is determined by the locally
planar mixing layer that forms at R = 1 between the jet and the outer stagnant fluid.
In general, the initial entrainment rate depends on the wall value of the velocity
gradient A = −dUi/dR of the jet. This gradient is A = 2(3/π)1/2 for the parabolic
profile and becomes larger for decreasing values of the boundary-layer thickness.
The initial, Goldstein region of the mixing layer can be described by introducing a
similarity variable y = (R − 1)/(X/A)1/3 together with a normalized stream function
G(y) defined such that Uj = A2/3X1/3Gy and Vj = A1/3X−1/3(yGy/3 − 2G/3). The
problem reduces to that of integrating Gyyy + 2GGyy/3 − G2

y/3 = 0 subject to the

boundary conditions Gy(y →∞) = 0 and G+ y2/2→ 0 as y → −∞ (Goldstein 1930).
The boundary condition as y → −∞ comes from imposing that there are no changes
in jet velocity in the first approximation, so that the mixing layer entrains fluid only
from the stagnant side. The entrainment rate Φ = (2/3)G∞A1/3X−1/3 is dictated by the
value G∞ ' 1.258 of the streamfunction at y = ∞; it grows with the cube root of the
velocity gradient at the base of the boundary layer of the incoming jet. The analysis
must however be modified when a uniform velocity profile Ui = π−1/2 is considered.
The appropriate similarity coordinate in that case is y = (R − 1)/(X/Ui)

1/2 and
the normalized streamfunction G(y) must be defined to give Uj = UiGy and Vj =

U
1/2
i X−1/2(yGy/2−G/2). The resulting equation, Gyyy+GGyy/2 = 0, must be integrated

with boundary conditions Gy(y → ∞) = 0 and G − y → 0 as y → −∞, a problem
solved by Chapman (1949) and Lessen (1950). The corresponding entrainment rate

becomes Φ = (1/2)G∞U
1/2
i X−1/2, where G∞ ' 1.238 is computed from the above

problem. In summary, the entrainment rate for X � 1 varies in general according to
Φ = CX−α, where C ' 1.049 and α = 1/3 for a Poiseuille jet profile and C ' 0.465
and α = 1/2 for a uniform profile. These asymptotic forms of the entrainment rate
for X � 1 are included for completeness in the plots shown in figure 2.

For X � 1 the solution to (3.1)–(3.4) approaches a self-similar solution in which
the jet acts in the first approximation as a point source of momentum (Schlichting
1933). The condition of constant momentum flux, together with simple order-of-
magnitude estimates in (3.1) and (3.2), indicate that the radius of the jet increases
linearly with distance, while the velocity components decrease according to Uj ∝ X−1

and Vj ∝ X−1. These scalings motivate the introduction of a similarity coordinate
η̄ = R/X, together with expansions in decreasing powers of X of the form Uj =
X−1U1

j (η̄) +X−2U2
j (η̄) + · · · and Vj = X−1V 1

j (η̄) +X−2V 2
j (η̄) + · · · . Introducing these

new variables into (3.1) and (3.2) gives a sequence of ordinary differential equations
to be integrated with boundary conditions dUk

j /dη̄ = Vk
j = 0 at η̄ = 0 and Uk

j = 0
as η̄ → ∞. As explained by Revuelta, Sánchez & Liñán (2001), the solution for the
first two terms in the expansion can be expressed jointly by introducing an apparent
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Figure 2. The function Φ(X) (left-hand plots) and the pressure jump δPj(X) (right-hand plots) for
a fully developed parabolic profile (a) and for a initially uniform velocity profile (b); dashed lines
represent the asymptotic behaviors for X � 1 and X � 1.

origin XO in the axial coordinate, a development that yields

Uj =
1

X +XO

512π/3

(64π/3 + η2)2
, Vj =

1

X +XO

4η(64π/3− η2)

(64π/3 + η2)2
, (3.7)

where the modified similarity coordinate η = R/(X+XO) also incorporates a dilatation
associated with the apparent origin. The solution satisfies the boundary conditions
given in (3.4) together with the additional integral constraint (3.6).

The value of the apparent origin can be calculated from continuity considerations.
Thus, integrating (3.5) gives the increasing jet volume flux∫ ∞

0

2πRUj dR = go + 8π

(
X +

∫ X

0

(Φ/4− 1) dX

)
, (3.8)

which can be evaluated at X � 1, using (3.7), to yield

8π(X +XO) = go + 8π

(
X +

∫ ∞
0

(Φ/4− 1) dX

)
, (3.9)

and then

XO =

∫ ∞
0

(Φ/4− 1) dX +
go

8π
. (3.10)

The value of XO is seen to depend on the shape of the initial velocity distribution
through the value of the initial volume flux go and also through the distribution of
entrainment rate Φ(X). Sample values of XO are 0.130 for the uniform jet and 0.095
for the parabolic velocity profile.

The boundary-layer approximation presented here could be extended to higher



Confined laminar jets with large expansion ratios 329

orders by accounting for smaller terms to determine, for instance, the variations of
pressure that occur across the jet. These can be computed by integrating the radial
component of the momentum equation

∂Pj

∂R
= −Uj

∂Vj

∂X
− Vj ∂Vj

∂R
+

∂

∂R

(
1

R

∂(RVj)

∂R

)
, (3.11)

in which pressure differences Pj are scaled with its characteristic value ρu2
j /Re

2
j . The

total pressure jump across the jet, δPj(X) = Pj(R = 0, X) − Pj(R = ∞, X), was
computed for uniform and Poiseuille inlet velocity profiles. The resulting distributions
are shown in figure 2, along with their associated values for X � 1 and for X � 1.
In the Schlichting region corresponding to X � 1, the presure increment simplifies to
δPj = [3/(8π)](X +XO)−2, as can be obtained by integrating (3.11) with use made of
the asymptotic velocity profiles (3.7). On the other hand, the solution for the mixing
layers at X � 1 yields δPj = (G2∞Ui/4)X−1 for the uniform velocity profile Ui = π−1/2

and δPj = (8/27)G2∞A2/3X−2/3 for the Goldstein mixing layer that forms otherwise,
where the velocity gradient A takes the value A = 2(3/π)1/2 for the Poiseuille velocity
profile.

The problem of finding the pressure distribution in the jet is in principle coupled
to the solution in the outer region O, which determines the boundary value for Pj as
R →∞. When Re2

j ε
4 � 1 the analysis is simpler, in that the pressure variations in O,

of order ρε4u2
j , are smaller than those occurring across the jet, of order ρu2

j /Re
2
j , and

can be consequently neglected when integrating (3.11). Differentiating the resulting
value of δPj determines the axial pressure gradient along the axis, which takes for
instance the value

∂Pj

∂X
= − 3/(4π)

(X +XO)3
(3.12)

for X � 1, a result to be used later.
The value of δPj calculated above increases as the inlet is approached, so that at

distances from the jet exit of the order of the pipe radius εa, the pressure jump across
the mixing layer becomes of order ρu2

j /Rej for the initially uniform velocity profile

and of order ρu2
j /Re

4/3
j for a non-uniform velocity profile. These pressure increments

will also be found at distances of order εa upstream from the jet exit, inducing small
changes in the axial velocity of order uj/Rej for the uniform velocity profile and

smaller changes of order uj/Re
4/3
j otherwise. The calculation of these perturbations

at the mouth of the pipe requires the solution of an elliptic problem, which we do not
carry out in this paper because these perturbations are small, and do not influence
the flow at the pipe exit at the leading order considered here. Similarly, the pressure
differences found in regions O, M and T are also much smaller than ρu2

j . Therefore,
in confined jets with ε � 1 the initial velocity profile ui at the pipe exit, which is
assumed to be a known boundary condition in our analysis, can be calculated without
accounting for pressure changes in the recirculating flow by analysing the flow in the
pipe with the pressure at its exit assumed to be equal to the pressure at the duct
outlet when this is downstream, and not too far, from region T.

4. Fluid motion outside the jet
As previously anticipated, the fluid motion in region O, in the vicinity of the

backstep, is induced by the jet entrainment, and it depends on the effective Reynolds
number Rea = Rejε. Adequate variables of order unity to describe the flow field
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at distances of order lj = Reaa from the backstep, where u ∼ ε2uj , v ∼ ν/a, and
p ∼ ρε4u2

j , are X = x/ε, Uo = u/ε, Vo = v and P = p/ε2. Introducing these variables
into (2.1)–(2.3) gives

∂Uo

∂X
+

1

r

∂(rVo)

∂r
= 0, (4.1)

Uo

∂Uo

∂X
+ Vo

∂Uo

∂r
= −∂P

∂X
+

1

r

∂

∂r

(
r
∂Uo

∂r

)
+

1

Re2
a

∂2Uo

∂X2
, (4.2)

1

Re2
a

(
Uo

∂Vo

∂X
+ Vo

∂Vo

∂r

)
= −∂P

∂r
+

1

Re2
a

∂

∂r

(
1

r

∂(rVo)

∂r

)
+

1

Re4
a

∂2Vo

∂X2
. (4.3)

Appropriate boundary conditions for X > 0 are

r = 1:

{
Uo = Vo = 0 (non-slip flow)
∂Uo/∂r = Vo = 0 (slip flow).

(4.4)

Also, the velocity near the axis must match with that in the jet for R � 1,

r → 0: rVo = −Φ(X), r
∂Uo

∂r
= − 1

Re2
a

dΦ

dX
. (4.5)

At the backstep wall (0 < r 6 1), the solution must satisfy the non-slip condition

X = 0: Uo = Vo = 0. (4.6)

To write the remaining boundary conditions one needs to study the solution to (4.1)–
(4.3) as X → ∞, where the entrainment rate reaches the constant value Φ(X) = 4,
and where the solution in O matches with that of the main region M.

4.1. Asymptotic solution for X � 1

At distances X � 1 where Φ(X) = 4, equations (4.1)–(4.5) have an exact self-similar
solution, with the radial velocity independent of X, while the axial velocity and the
pressure gradient both increase linearly with distance. Introducing the self-similar
variables

X � 1: Uo = [X +XO − go/(8π)]U(r), Vo = V (r), (4.7)

and dP/dX = [X +XO − go/(8π)]Λ into (4.1) and (4.2) gives

U + (1/r)(rV )r = 0 (4.8)

Urr +Ur(−V + (1/r))−U2 = Λ, (4.9)

to be integrated with boundary conditions rV = −4 at r = 0. For the non-slip solution,
the boundary conditions at r = 1 reduce to U = V = 0, while Ur = V = 0 must be
used for slip flow. In the notation, the subindex r denotes a derivative in the radial
direction. The boundary conditions at r = 1 correspond to those given in (2.7) and
(2.8), while the boundary condition at r = 0 follows from matching the entrainment
rate (4.5) evaluated at X � 1. The translation XO − go/(8π) =

∫ ∞
0

(Φ/4 − 1) dX
employed in the expansions for Uo and dP/dX guarantees that the total volume flux
across the pipe equals εgo in agreeement with (2.10), as can be seen by adding (3.8)

to the outer volume flux
∫ 1

0
2πrUo dr = −8π(X +XO) + go.

For slip flow, the above problem can be integrated exactly to give

U = −8, V = −4(1− r2)/r, Λ = −64. (4.10)

On the other hand, the solution for non-slip flow is facilitated by writing the problem



Confined laminar jets with large expansion ratios 331

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4

r

–rV(r)

1.0

0.8

0.6

0.4

0.2

–20 –15 –10 –5 0

r

U(r)

0

Figure 3. The radial variation of the functions U(r) and F = −rV .

in terms of the stream function ψ(r, X) = [X+XO−go/(8π)]F(r). Substituing U = Fr/r
and V = −F/r in (4.9) yields

Frrr + Frr(F − 1)/r + Fr(1− rFr − F)/r2 = Λr, (4.11)

to be integrated with boundary conditions

F(1) = Fr(1) = 0, F(0) = 4. (4.12)

Integration of the above problem by a shooting method determines the function F
as well as the unknown constant Λ = 12.258. Profiles of F = −rV and U = Fr/r are
displayed in figure 3. The integrations were initiated at r � 1, where the function F
depends on three unknown constants according to F = 4+Λr4/48+A1r

2 +A2 +A3r
−2.

The two constants A2 = A3 = 0 must be chosen to satisfy the boundary condition
F(0) = 4, yielding F = 4 + Λr4/48 + A1r

2 as the starting solution at 0 < r � 1. An
embedded Runge–Kutta–Fehlberg method of fourth and fifth order was employed in
the numerical integrations, with the shooting constants A1 and Λ being corrected to
satisfy the two conditions F = Fr = 0 at r = 1 via a Newton–Raphson formula. A
value A1 = −9.695 was found for the solution with Λ = 12.258 shown in figure 3.

It is worth mentioning that the solution to (4.11) is not unique; a second solution,
corresponding to Λ = −387.438 and A1 = −33.976, also exists. Unlike the solution
in figure 3, for which the velocity U is negative everywhere, the axial velocity of the
second solution vanishes at an intermediate radial location and becomes positive near
the wall. Multiple solutions also appear in the solution with slip flow: integration
of (4.11) with Frr = Fr (Ur = 0) replacing the non-slip condition Fr = 0 at r = 1
gives, in addition to the uniform velocity profile U = −8 previously discussed, a
second solution for Λ = −194.690 and A1 = −25.244 with positive U near the wall.
To test the validity of these additional solutions as intermediate asymptotic profiles
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corresponding to X � 1 and x� 1, their associated velocity profiles were employed
in the boundary condition for integration of the flow in region M. The resulting
integration showed profiles that evolved rapidly to recover those corresponding to
figure 3 for non-slip flow and those given in (4.10) for slip flow, only two or three
grid points away from the boundary. This outcome indicates that these additional
solutions of (4.11) are irrelevant; although they are similarity solutions of the flow in
O for X � 1, they do not satisfy the matching condition with the solution in M, and
can be therefore discarded in the following development.

4.2. Leading-order solution in O

The Navier–Stokes equations (4.1)–(4.3) were integrated with boundary conditions
(4.4)–(4.7) for different values of the parameter Rea and with entrainment-rate laws
Φ(X) corresponding to both uniform and Poiseuille inlet velocity profiles. The results
shown in figures 4 and 5 correspond to a uniform inlet profile with non-slip flow at
r = 1. The equations were solved with the simple algorithm introduced by Patankar
& Spalding (1972) and Patankar (1980). The problem was formulated as unsteady by
including false time derivatives in the two components of the momentum equation,
and was integrated in time until the steady state was reached. A three-level fully
implicit scheme in time and second-order centred schemes for the spatial derivatives
were used for the discretization of the momentum equations. These were solved in
every time step with an alternating direction implicit (ADI) procedure. The singular
behaviour of the scaled radial velocity Vo near the axis was avoided in this problem
by replacing the variable Vo with (rVo). The graphs shown correspond to a minimum
radius of the integration equal to 0.01. No significant differences were observed in the
results obtained with other values (e.g. 0.02, 0.005). Also, the numerical integrations
were performed with the boundary condition as X → ∞ evaluated at different
locations X � 1 to guarantee that the results are independent of this selection. In
particular, for the integrations shown here the profiles (4.7) were evaluated at X = 5.

Figure 4(a, b) exhibits streamlines corresponding to Rea = 1.0 and 2.5. As expected,
the jet entrainment causes the resulting streamlines to deflect towards the axis, except
near the corner, where a recirculating eddy emerges. With the streamfunction Ψ
defined in the usual manner with Ψ = 0 at the wall, the streamlines ending at the
axis correspond to equal increments δΨ = 0.25 from this value, while for the slow
recirculating flow the spacing of the streamlines is δΨ = 10−4. According to Moffatt
(1964), the non-slender recirculating eddy must be followed by an infinite series of
Stokes corner eddies of decaying size and strength, but this local detail of the flow
pattern could not be resolved in our computation.

Figure 5 represents the evolution with distance of the scaled pressure gradient
∂P/∂X along the wall. The pressure gradient, which increases linearly with distance
for X � 1, becomes negative at an intermediate location, then reaches a minimum
value and eventually becomes positive again as the corner is approached. The com-
parison of figures 4 and 5 reveals that the location of minimum pressure gradient
coincides approximately with the reattachment point of the streamline bounding the
recirculating eddy.

Note that the structure of the flow field near the corner does not change significantly
with Rea, although this outcome is not apparent in figure 4 because of the scale
used for the coordinate X. To compare the different non-slender eddies, it is more
appropriate to use the radius a to scale both the radial and axial coordinate, as is
done in figure 6 to be discussed below.

Note also that the results obtained with an entrainment rate Φ(X) corresponding to
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Figure 4. Solution in the outer region O with non-slip flow at r = 1 and uniform inlet velocity
profile for (a) Rea = 1.0, (b) Rea = 2.5, and (c) Rea = ∞ (BL). Streamlines ending at the axis
correspond to increments δΨ = 0.25 from the Ψ = 0 value at the wall, while streamlines of
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line) being included for comparison.
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non-slip flow at r = 1 and uniform inlet velocity profile for Rea = 1.0, Rea = 2.5, and Rea = ∞. The
inset shows a magnification of the pressure gradient for Rea = ∞, with the dashed line representing
its asymptotic behaviour at X � 1.

a Poiseuille profile change only marginally from those exhibited above for the uniform
inlet profile. In particular, the streamlines of the recirculating eddy and the pressure
field found at the corner are very similar in both cases. For instance, the pressure
gradient along the wall for Rea = 2.5, which reaches a minimum ∂P/∂X ' −16.53
at X ' 0.066 in figure 5, with Poiseuille entrainment exhibits a minimum value
∂P/∂X ' −14.79 at X ' 0.061. Significant quantitative changes are only found near
the origin, where differences in the entrainment rate are more strongly felt, thereby
modifying the velocity field in agreement with (4.5). For the case of slip flow at the
wall, the differences with the results in figures 4 and 5 are more pronounced, and
affect in particular the flow pattern near the corner, where there is no recirculating
eddy.

4.2.1. The limit of large Reynolds numbers, Rea � 1

In this limiting case, the boundary-layer approximation can be used to describe the
flow in O at distances from the backstep of order lj = Reaa, as can be seen by taking
the limit Rea →∞ in (4.1)–(4.3). The corresponding equations, obtained by replacing
(4.3) with ∂P/∂r = 0 and by neglecting the last term in (4.2), can be integrated with
boundary conditions (4.4) and (4.5) and with an initial velocity profile at X � 1 given
in (4.7). Since the function U(r) shown in figure 3 is negative everywhere, the flow
is directed towards the backstep in this outer region for X � 1, and the resulting
problem becomes parabolic in decreasing values of X. Integration can be performed
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by marching from X � 1 towards the backstep, provided Uo remains negative across
the pipe, a result that was verified in the computations.

When slip flow is considered at r = 1, the boundary-layer problem can be integrated
exactly to give

Uo = −2

∫ X

0

Φ dX, Vo = −Φ(1− r2)/r,
dP

dX
= −4Φ

∫ X

0

Φ dX. (4.13)

Numerical integration is required to solve the problem however when non-slip bound-
ary conditions at r = 1 are employed. The procedure was implemented with an implicit
numerical scheme. Although the presence of a singularity in Φ at X = 0 complicates
the computation of the solution in the inmediate vicinity of the backstep, the integra-
tion could be extended to values of X as small as X = 2 × 10−3. Entrainment rates
Φ(X) corresponding to both uniform and parabolic jets were considered. Since only
backflow (negative values of Uo) was found in the computations, the parabolicity of
the problem and the validity of the results obtained up to the smallest value of X
computed is guaranteed.

Results corresponding to a uniform inlet velocity profile are shown in figures 4 and
5. Figure 4 represents streamlines, with the plot (d ) exhibiting the associated velocity
profiles Uo at different axial locations. Following the transition of the entrainment
rate to the Schlichting solution observed in figure 2, the axial velocity profiles are
seen to evolve rapidly towards the asymptotic solution Uo = [X + XO − go/(8π)]U,
as shown in the figure by comparing at X = 0.1 the asymptotic velocity profile
with that obtained numerically. On the other hand, figure 5 represents the evolution
with distance of the normalized pressure gradient dP/dX, along with its asymptotic
behaviour dP/dX = [X + XO − go/(8π)]Λ corresponding to X � 1. Although the
computation reveals a negative pressure gradient at X � 1, the associated deceleration
was not enough to reverse the backflow in the domain computed.

Note that the boundary-layer approximation can be expected to fail at distances
x ∼ a from the backstep (X ∼ Re−1

a ), in a region where u ∼ v ∼ Reαaν/a. For
the analysis of this inviscid region of strong streamline deflection, not given here,
the rescaled variables ReaX, Re1−α

a Uo, Re
−α
a Vo and Re2(1−α)

a P should be introduced.
Boundary conditions for the associated Euler equations must consider the large
entrainment rate Φ = CX−α at the axis as well as the velocity profiles found at the
end of the boundary-layer region.

4.2.2. The limit of small Reynolds numbers, Rea � 1

In the opposite limit Rea � 1, the region of streamline deflection x ∼ a, where
the characteristic velocity components are u ∼ v ∼ ν/a, is much larger than the
region of jet development. To describe the outer motion, it is therefore convenient
to use a and ν/a as scales for lengths and velocities. They lead to the rescaled axial

coordinate X̂ = x/a = ReaX and modified variables Ûo = u/(ν/a) = ReaUo and

P̂ = p/(ρν2/a2) = Re2
aP , to be used to write the conservation equations (4.1)–(4.3)

in a form independent of Rea. The resulting parameter-free Navier–Stokes equations
must be integrated with boundary conditions, obtained by neglecting small terms of
order Rea in (4.4)–(4.7), given by

X̂ > 0:


r = 0: rVo = −4

r = 1:

{
Ûo = Vo = 0 (non-slip flow)

∂Ûo/∂r = Vo = 0 (slip flow)

(4.14)
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and

0 < r 6 1:

{
X̂ = 0: Ûo = Vo = 0

X̂ = ∞: Ûo = X̂U(r), Vo = V (r).
(4.15)

The resulting flow field is similar to those given above for finite values of Rea.
Specifically, in an r–X̂ plot the resulting streamline pattern is practically identical to
that shown in the r–X plot of figure 4 for Rea = 1. In this limiting case Rea � 1,
the flow near the origin approaches the similarity Navier–Stokes solution proposed
by Schneider (1981). This region of self-similar flow corresponds to distances from
the jet entrance much smaller than a and yet much larger than lj = Reaa, so that the
entrainment rate at the axis becomes constant.

As previously noted, the flow-field structure at the corner is weakly dependent
on the value of Rea, an outcome that is investigated in figure 6(a), where the
streamlines corresponding to values of the rescaled streamfunction Ψ̂ = ReaΨ =
(0,−10−4,−2 × 10−4) are plotted for the three rescaled Reynolds numbers Rea =
(0, 1.0, 2.5). The agreement obtained is seen to be excellent for the values of Rea
considered. For the axial pressure field at the wall, the results in figure 5 suggest that
the difference between the axial pressure gradient and its asymptotic value at X � 1,
∂P/∂X = [X+XO−go/(8π)]Λ, scales with Re−1

a . To further elucidate this issue, we also
represent in figure 6(b) the variation of ReaδP = Rea{∂P/∂X− [X+XO−go/(8π)]Λ}
along the wall for Rea = (1.0, 2.5) and also for Rea = 0 (ReaδP = ∂P̂ /∂X̂ − ΛX̂).
Again, the agreement found further confirms that the flow pattern at the corner is
weakly dependent on Rea, so that the solution for Rea = 0 remains accurate even for
moderately large values of Rea.

5. The main recirculating region
The conservation equations in M are those given above in (2.1)–(2.3), which reduce,

with small relative errors of order Re−2
j , to the boundary-layer equations

∂u

∂x
+

1

r

∂(rv)

∂r
= 0, (5.1)

u
∂u

∂x
+ v

∂u

∂r
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
. (5.2)

These equations are to be integrated with an initial velocity profile determined by
matching the solution in M with the solution in regions J and O. Thus, combining
the outer solution for X � 1 given in (4.7) with the Schlichting solution given in (3.7)
yields, with relative errors of order ε2,

u =
[
x+ ε

(
XO − go

8π

)]
U(r) +

512π

3(x+ εXO)

(
64π

3
+

r2

(x+ εXO)2

)−2

(5.3)

for the velocity profile at x = 0. To proceed with the asymptotic analysis, expansions in
powers of ε (or, alternatively, in powers of Re−1

j , since both procedures are equivalent
in the distinguished limit Rejε ∼ 1 used here) should be introduced for the different
flow variables. Solving the resulting problem arising at each order then produces the
required solution in a sequential manner. Since the boundary-layer equations (5.1)–
(5.2) and the associated initial velocity profile (5.3) have relative errors of order Re−2

j

and ε2, respectively, they can be used to calculate the first two terms in the asymptotic
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Figure 6. (a) Equally spaced streamlines near the corner with δΨ̂ = 10−4 for Rea = 0 (solid
lines), Rea = 1.0 (dot-dashed lines) and Rea = 2.5 (dashed lines); (b) the corresponding incremental
pressure gradient ReaδP along the wall.

expansion presented below. Details of the finite-volume scheme used to integrate the
boundary-layer equations are given in an appendix.

5.1. Leading-order description

At leading order, the problem reduces to that of integrating (5.1) and (5.2) with
boundary conditions at the axis and on the wall given in (2.6)–(2.8), and with an
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Figure 7. The leading-order solution for the confined jet with non-slip flow at r = 1: (a) streamlines
(the stream function for outermost streamline is ψ = 5 × 10−6 and the remaining streamlines
correspond to increasing values of ψ from ψ = 5 × 10−3 in equal increments δψ = 5 × 10−3) and
(b) axial velocity profiles at x = (0.02, 0.04, 0.06, 0.08, 0.10), with the velocity scale indicated for the
profile at x = 0.04.

initial velocity profile

u = xU(r) +
512π

3x

(
64π

3
+
r2

x2

)−2

(5.4)

obtained from (5.3) with ε = 0. In this leading-order description, the jet acts as a
point source of momentum with negligible mass flow rate, yielding a parameter-free
problem independent of the shape of the inlet velocity profile. The mass flux and the
shape of the inlet velocity profile will enter at the following order, in agreement with
(2.10).

Figures 7 and 8 show the streamlines of the resulting flow field with non-slip
and slip flow, respectively, along with characteristic axial velocity profiles at different
downstream locations. As a result of the zero mass flux associated with the leading-
order description, the axial velocity vanishes at a finite location xs and the flow
remains stagnant downstream. For non-slip flow, the eddy extends to xs ' 0.106,
while due to the absence of viscous forces at r = 1 the eddy length increases to
xs ' 0.131 for slip flow. With the stream function ψ defined in the usual manner with
ψ = 0 along the axis, the maximum value obtained at the eddy centre was seen to be
ψ = 0.0816 for non-slip flow and ψ = 0.1057 for slip flow. The outermost streamline
depicted in both plots corresponds to ψ = 5 × 10−6, whereas values of the stream
function for the remaining streamlines increase from ψ = 5×10−3 in equal increments
δψ = 5× 10−3 (for non-slip flow) and δψ = 10−2 (for slip flow).

Note that the eddy length xs ' 0.106 calculated here differs significantly from that
obtained in the numerical integrations of axysimmetric sudden expansions reported
in Acrivos & Schrader (1982). Their prediction for the eddy length when ε → 0 can
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Figure 8. The leading-order solution for the confined jet with slip flow at r = 1: (a) streamlines (the
stream function for outermost streamline is ψ = 5× 10−6 and the remaining streamlines correspond
to increasing values of ψ from ψ = 5× 10−3 in equal increments δψ = 10−2) and (b) axial velocity
profiles at x = (0.02, 0.04, 0.06, 0.08, 0.10, 0.12), with the velocity scale indicated for the profile at
x = 0.04.

be written as xs ' 0.119 in terms of the axial coordinate used here. This discrepancy
may be explained by recalling that Acrivos & Schrader (1982) treated the case ε� 1
only marginally; they were in fact interested in expansion ratios of order unity or
smaller. Perhaps their numerical integrations were not extended to cover sufficiently
small values of ε, or their numerical scheme was not adapted well to describe the
singular behaviour associated with the jet in the limit ε→ 0.

Figure 9(a) shows the pressure gradient, which is compared with the asymptotic
prediction dp/dx = xΛ associated with (5.4). The pressure gradient with non-slip
flow increases from a zero initial value at the entrance to reach a maximum value
dp/dx ' 10.49 at x = 0.061. For x > 0.061, dp/dx continuously decreases, vanishing
as the eddy rear end is approached. With slip flow at r = 1, the pressure gradient
is initially negative, although it eventually becomes positive, reaching a maximum
value dp/dx ' 6.077 at x = 0.080. The different behaviour can be easily explained
in physical terms. With slip flow at r = 1 the initial pressure gradient is negative as
required to inviscidly decelerate the outer flow that approaches the backstep, whereas
in the case of non-slip flow the pressure gradient is initially positive to overcome the
viscous force exerted by the confining wall.

Integration of the pressure gradient provides the pressure variations from the corner
value, which are also shown in the figure. The final value (p ' 0.593 for non-slip
flow and p ' 0.318 for slip flow) gives the total pressure increment associated with
the sudden expansion. Note that the value obtained numerically with slip flow agrees
well with the exact value p = 1/π, determined in this case using the integral form of
the momentum equation for the fluid volume occupied by the eddy.

For completeness, figure 9(b) also shows the evolution with x of the axial velocity
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Figure 9. (a) The pressure gradients (solid lines) and associated leading-order pressure distributions
(dot-dashed lines) corresponding to the confined jet with both non-slip flow (NS) and slip flow (S),
and (b) the corresponding distributions of axial velocity at the axis (upper plot) and at the wall
(lower plot); dashed lines represent the asymptotic predictions for x� 1 and for (xs − x)� 1.

u along the axis (for both non-slip and slip flow) and also at the wall (for slip flow).
The results are compared with the boundary solutions u = 3/(8πx) at r = 0 and
u = −8x at r = 1 obtained from (5.4) for x� 1. The velocity along the axis is seen to
evolve from the large jet value to the vanishing values found as the stagnation plane,
x = xs, is approached, showing a disparity of scales that is exhibited in the plot by
using a logarithmic scale for u. The negative velocity at the slip wall is seen to reach
a minimum value u = −0.433 at a location x = 0.0582 upstream from the point of
maximum pressure gradient.

5.2. First-order corrections

The solution described above represents at leading order the flow field in region M.
The first-order correction, of order ε, must satisfy the linearized form of the boundary-
layer equations (5.1) and (5.2) subject to an initial condition determined by linearizing
(5.3) about the leading-order solution. Combining the leading-order results with the
correction in a two-term expansion would then provide a description for the flow field
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in the main region M with small relative errors of order ε2. This expansion fails at
x = xs, where the correction for the axial velocity is seen to develop a logarithmic
singularity proportional to ln(xs − x) as the leading-order solution vanishes. As seen
below in (6.7), the description of the transition region towards the final downstream
solution must account for the presence of this singularity.

Instead of following this standard procedure, we choose here to integrate (5.1)
and (5.2) with the initial velocity profile given in (5.3). This alternative method
yields the solution in M with relative errors of order ε2, just like the two-term
expansion previously discussed. The main advantage is that the resulting solution
does not become singular at x = xs, and reproduces the asymptotic flow found
downstream, thereby providing results that can be easily compared with integrations
of the full Navier–Stokes problem (2.1)–(2.9). Nevertheless, the procedure proposed
is not expected to describe accurately the solution in the boundary region T , which
is considered separately below.

The results obtained with the initial velocity profile (5.3) are similar to the leading-
order results previously described. The main differences stem from the non-zero mass
flow rate (2.10), which causes the flow downstream to approach either the Poiseuille
solution with a negative constant value of the pressure gradient (if non-slip flow is
considered) or a uniform velocity profile with zero pressure gradient (for slip flow).
Streamlines corresponding to the case ε = 0.05 obtained for a Poiseuille inlet profile
with non-slip outer wall are given in figure 10(e). The results of the integration,
notably the resulting eddy length, were seen to be quite independent of the initial
location used to evaluate (5.3) provided 1 � x & 0.1ε (x = 0.005 for the integration
shown in the figure). As can be seen, the toroidal vortex is very similar to that shown
in figure 7 for the case ε = 0. In particular, the streamline separating the recirculating
flow intersects the wall at a location xf that differs by a small amount (xf−xs)/xs ∼ ε
from the eddy length xs of figure 7.

The results of the boundary-layer analysis were compared with numerical integra-
tions of the full Navier–Stokes problem formulated in (2.1)–(2.9). As in the integration
of the problem (4.1)–(4.6), the simple algorithm was used. In the computations, (2.9)
was replaced with an outflow boundary condition. Streamlines corresponding to val-
ues of the Reynolds number ranging from Rej = 20 to Rej = 500 are plotted in
figure 10(a–d ). As can be seen, the streamline pattern is very similar for all cases
considered. The eddy length predicted by the boundary-layer approximation matches
the results of the Navier–Stokes integrations, although larger discrepancies occur as
Rej decreases. Note that the corner eddy encountered above in region O also appears
in the Navier–Stokes integrations for the two smaller Rej considered.

Further comparisons between the boundary-layer results and those of the full
integrations are given in figure 11. Figure 11(c) shows the evolution of the flow
velocity along the axis as obtained with the boundary-layer approximation and with
the Navier–Stokes equations for Rej = 50 and 200. The agreement is very good in
both cases, with the curve for Rej = 200 being practically indistinguishable from that
of the boundary-layer results over the range of x considered.

Comparisons of axial pressure gradients obtained for Rej = 50 and 200 with that
obtained from the boundary-layer approach are given in figure 11(a, b); plot (b) shows
the evolution of ∂p/∂x at the wall. The boundary-layer approximation reproduces
accurately the results for Rej = 200, whereas somewhat larger discrepancies are seen
for the case Rej = 50. Notice also that as the backstep is approached the pressure
gradient at the wall reproduces the behaviour predicted in the outer region O, i.e. it
exhibits a minimum value that is more pronounced for smaller values of Rea = Rejε.
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Figure 10. Streamlines of the confined jet for ε = 0.05 with non-slip flow at r = 1 and Poiseuille inlet
velocity profile as obtained by integrating the boundary-layer equations (5.1) and (5.2) (e) and by
integrating the full Navier–Stokes problem (2.1)–(2.9) for different values of the Reynolds number
Rej: (a) Rej = 20, (b) Rej = 50, (c) Rej = 200, (d ) Rej = 500. The recirculating streamlines (solid
lines) correspond to increments δψ = goε/(2π) from the ψ = 0 value of the dividing streamline,
while streamlines of escaping fluid (dashed lines) correspond to decrements δψ = −goε/(10π) from
this same value.
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distribution along the axis (c) as obtained from the boundary-layer results (dashed lines) and from
the full Navier–Stokes problem (solid lines) for ε = 0.05 with non-slip flow at r = 1 and Poiseuille
profile at the inlet.

The pressure gradient along the axis is shown in figure 11(a). To account for the
presence of the jet, the pressure gradient of the asymptotic analysis is constructed in
this case by adding the contribution of Schlichting solution ∂p/∂x = −(3/4π)Re−2

j (x+

εXO)−3, calculated above in (3.12), to the distribution obtained in region M from (5.1)
and (5.2). The resulting composite expansion for the pressure gradient is seen to
describe well the Navier–Stokes results for the two values of Rej considered.

6. The transition region
As previously anticipated, the dividing streamline eventually opens up at the rear

end of the recirculating region, leading to a downstream region of parallel flow
through a short transition region, denoted by T in the sketch of figure 1, where
u is of order ε. If a non-slip wall is considered, as in the calculation of figure 10,
then the pressure gradient, which was positive in the recirculating region, becomes
negative somewhere in this transition region, and reaches the Poiseuille value shortly
downstream. A uniform stream with zero pressure gradient replaces the Poiseuille
solution downstream from the transition region if slip flow is considered at r = 1.

The description of the flow structure in region T employes a stretched axial
coordinate X̄ = (x− xe)/ε, where xe is a given location within this region. The choice
of xe is in principle arbitrary; one could for instance use xe = xs or define xe as the
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location where the pressure reaches its peak value (in non-slip flow configurations).
This arbitrariness will be removed when defining the boundary conditions at X̄ = −∞.
Introducing the coordinate X̄ together with the variables Ut = u/ε, Vt = v and
P̄ = p/ε2, reduces (2.1)–(2.3) to

∂Ut

∂X̄
+

1

r

∂(rVt)

∂r
= 0, (6.1)

Ut

∂Ut

∂X̄
+ Vt

∂Ut

∂r
= −∂P̄

∂X̄
+

1

r

∂

∂r

(
r
∂Ut

∂r

)
+

1

Re2
a

∂2Ut

∂X̄2
, (6.2)

1

Re2
a

(
Ut

∂Vt

∂X̄
+ Vt

∂Vt

∂r

)
= −∂P̄

∂r
+

1

Re2
a

∂

∂r

(
1

r

∂(rVt)

∂r

)
+

1

Re4
a

∂2Vt

∂X̄2
, (6.3)

to be integrated with boundary conditions

r = 0: ∂Ut/∂r = Vt = 0 (6.4)

and

r = 1:

{
Ut = Vt = 0 (non-slip flow)
∂Ut/∂r = Vt = 0 (slip flow).

(6.5)

The boundary conditions far downstream,

X̄ � 1:

{
Ut = (2go/π)(1− r2), Vt = 0 (non-slip flow)
Ut = go/π, Vt = 0 (slip flow)

(6.6)

follow from rewriting (2.9) for the present variables. For the Poiseuille profile, the
associated pressure gradient becomes dP̄ /dX̄ = −8go/π, while the pressure gradient
with slip flow vanishes as X̄ → ∞. To write the remaining boundary conditions
one needs to study the solution to (6.1)–(6.3) as X̄ → −∞, which matches with the
asymptotic results in M as x→ xs.

6.1. Solution for X̄ → −∞
For X̄ → −∞ the flow approaches a self-similar solution of the equations, of the type
found downstream from region O. In particular, the radial velocity becomes indepen-
dent of X̄, and the axial velocity and the axial pressure gradient increase linearly with
distance. Appropriate similarity expansions for the different flow variables are

Ut = −Ū(X̄ + Bgo ln |X̄|) + BgoŨ + · · · ,
Vt = V̄ (1 + Bgo/X̄) + · · · ,
dP̄

dX̄
= Λ̄(X̄ + Bgo ln |X̄|) + · · · .

 (6.7)

Note that the first terms in the expansions above match with the leading-order
solution in M, whereas the remaining terms would enter when matching with the
first-order correction, of order ε, which includes a logarithmic singularity as explained
above.

Introducing these similarity variables into (6.1) and (6.2) yields at leading order

−Ū + (1/r)(rV̄ )r = 0, (6.8)

Ūrr + ((1/r)− V̄ )Ūr + Ū2 = −Λ̄, (6.9)

to be integrated with boundary conditions given in (6.4) and (6.5):

Ūr(0) = V̄ (0) = Ū(1) = V̄ (1) = 0 (6.10)



Confined laminar jets with large expansion ratios 345

for non-slip flow and

Ūr(0) = V̄ (0) = Ūr(1) = V̄ (1) = 0 (6.11)

for slip flow. Use of the similarity stream function X̄F̄(r), such that Ū = −F̄r/r and
V̄ = −F̄/r, reduces the problem to that of integrating

F̄rrr + F̄rr(F̄ − 1)/r + F̄r(1− rF̄r − F̄)/r2 = Λ̄r, (6.12)

with boundary conditions

(F̄r/r)r = F̄ = 0 (6.13)

at r = 0 and

F̄r = F̄ = 0 (non-slip flow)
(F̄r/r)r = F̄ = 0 (slip flow)

}
(6.14)

at r = 1. The equation for F̄ is identical to that previously written in (4.11) for the
stream function F downstream from region O.

Apart from the solution F̄ = 0 and Λ̄ = 0, the problem admits a non-trivial
solution for Λ̄ = −348.59 (non-slip flow) and Λ̄ = −162.27 (slip flow), and the
associated velocity profiles Ū = −F̄r/r and V̄ = −F̄/r are shown in figure 12. A
shooting method was used, as before, to integrate (4.11). Shooting was initiated
at r � 1, where the solution of the above equation is in general of the form
F̄ = Λ̄r4/16 + B1r

2 + B2 + B3r
2 ln(r). The boundary conditions at r = 0 require

that B2 = B3 = 0, leaving B1 and Λ̄ as shooting parameters to be varied until the
two boundary conditions at r = 1 were satisfied. The values B1 = −17.698 and
B1 = −12.424 were obtained for non-slip and slip flow, respectively.

As previously mentioned, the first terms in the expansions (6.7) match with the
leading-order solution in M, which near the stagnation plane admits the simplified
representation u = (xs − x)Ū(r), v = V̄ (r), and dp/dx = Λ̄(x − xs). This result can
be used to further test the accuracy of the boundary-layer solutions obtained by
integrating (5.1) and (5.2). The degree of agreement obtained is illustrated in figures 9
and 12. The linear decrease with distance of the pressure gradient and of the axial
velocity seen in figure 9 closely agrees with the asymptotic predictions. Also, the
radial velocity distribution near x = xs adjusts to the asymptotic prediction v = V̄ (r),
a result that is illustrated in figure 12.

The expansions (6.7) incorporate a higher-order correction Ũ(r) to the axial velocity,
which is included to accommodate the non-zero mass flux go, along with appropriate
switchback terms (the second terms in the parentheses), which are necessary to provide
solvability for Ũ(r). The correction is determined by the linear problem

Ũrr +

(
1

r
− V̄

)
Ũr + ŪŨ = Ū2 − V̄ Ūr, (6.15)

Ũr(0) = Ũ(1) = 0 (non-slip flow)
Ũr(0) = Ũr(1) = 0 (slip flow).

}
(6.16)

The resulting profile Ũ(r) is shown in figure 13. The constant B appearing in (6.7) is

given by B =
(∫ 1

0
2πrŨ dr

)−1

, yielding B = 0.01981 for non-slip flow and B = 0.01953

for slip flow.

6.2. Leading-order solution

The expressions given in (6.7) for the velocity components complete the boundary
conditions needed to integrate (6.1)–(6.3), which are invariant under translations in X̄.
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Figure 12. The radial variation of the functions Ū(r) and V̄ (r) with non-slip boundary conditions
(NS) and with slip boundary conditions (S); the dashed line represents the radial velocity profile of
the overall solution for ε = 0 evaluated at x = 0.102 (NS) and at x = 0.129 (S).

One could arbitrarily choose the origin of X̄ incorporating a translation of magnitude
X̄T in the boundary condition, by using Ut = −Ū(X̄+X̄T +Bgo ln |X̄|)+BgoŨ instead
of the corresponding expansion shown in (6.7). In the results presented below, this
arbitrariness was removed by choosing X̄T = 0.

The numerical procedure employed is identical to that developed for integrating
(4.1)–(4.3). Streamlines of the resulting flow field with non-slip flow at r = 1 and a
Poiseuille inlet velocity profile are exhibited in figure 14(a, b) for Rea = 1.0 and 2.5. The
dividing streamline is here assigned the value Ψ = εψ = 0. Solid lines correspond to
positive values of Ψ (recirculating fluid) equally spaced in increments δΨ = go/(2π),
whereas the spacing used for the negative values of Ψ equals δΨ = go/(10π). As
can be seen, a result of our selection for X̄T is that the dividing streamline intersects
the wall at an axial location X̄ 6= 0 which varies with Rea. The transition towards
the final Poiseuille solution occurs downstream from this location, in a region that
becomes shorter as the Reynolds number increases, a behaviour also observed in the
numerical computations of the overall problem shown in figure 10.

Results corresponding to Rea → ∞ are also included in figure 14(c). In that case,
(6.1)–(6.3) reduce to the boundary-layer equations, with ∂P̄ /∂r = 0 replacing (6.3)
and with the last term neglected in (6.2). The axial velocity profile given in (6.7) is
employed as the initial condition in the integration. As can be seen, the streamlines
are similar to those obtained with Rea = 2.5, indicating that the boundary-layer limit
approximates well the structure of the transition region even for values of Rea only
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Figure 13. The radial variation of the function Ũ(r) with (a) non-slip boundary conditions and
(b) with slip boundary conditions.

moderately large. For completeness, the plot includes axial velocity profiles obtained
with the boundary-layer approximation at different downstream locations.

The dependence of the solution on Rea is further illustrated in figure 15, where
the axial pressure gradient at the axis (plot a), at the wall (plot b), and the velocity
distribution along the axis (plot c) are shown for the three cases of figure 14. The
plot reproduces the trends observed previously: the transition to the final Poiseuille
solution is more abrupt for larger values of Rea, and the quantitative agreement
between the boundary-layer results and those of the Navier–Stokes integrations is
already apparent for Rea = 2.5.

Small modifications should be incorporated in the problem formulation to describe
the region of streamline deflection in the limit Rea � 1, a development that parallels
the analysis of region O in this same limit. The characteristic axial length of streamline
deflection, x − xe ∼ a, and the characteristic axial velocity, u ∼ ν/a, must be used in
defining appropriate rescaled variables X̃ = ReaX̄, Ũt = ReaUt and P̃ = Re2

aP̄ . Use
of these variables enables the parameter Rea to be scaled out of the Navier–Stokes
equations (6.1)–(6.3). Apart from (6.4) and (6.5), the rescaled velocity must satisfy Ũt =
−ŪX̃ and Vt = V̄ at X̃ = −∞ and Ũt = Vt = 0 at X̃ = ∞, the leading-order boundary
conditions obtained by neglecting in (6.6) and (6.7) terms that vanish when Rea → 0.
With a zero mass flux, the leading-order solution must show for X̃ → ∞ a velocity
that decays with X̃ at an exponential rate, eventually giving rise to the Stokes toroidal
vortices described by Wakiya (1976). This leading-order description can be expected
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Figure 14. Solution in the transition region with non-slip flow at r = 1 and Poiseuille velocity profile
at the inlet for (a) Rea = 1.0, (b) Rea = 2.5, (c) Rea = ∞. Recirculating streamlines (solid lines) corre-
spond to increments δΨ = go/(2π) from theΨ = 0 value of the dividing streamline, while streamlines
of escaping fluid (dashed lines) correspond to decrements δΨ = −go/(10π) from this same value.
(d ) Velocity profiles for the boundary-layer results are given at X̄ = (−0.6,−0.3, 0.0, 0.3, 0.6), with
the velocity scale indicated in the plot at X̄ = −0.3.
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Figure 15. The pressure gradients at the wall (b) and at the axis (a), along with the axial velocity
distribution along the axis (c) as obtained from the boundary-layer results (dashed lines) and from
the full Navier–Stokes problem (solid lines) for the transition region of figure 14.

to fail as Ũt decays to values of order Rea, where the mass flux should be taken into
account, eventually leading to either the Poiseuille profile or a uniform velocity profile.

7. Conclusions
Round laminar jets with coaxial confinement are investigated when the jet Reynolds

number and the expansion ratio are both large quantities. The long recirculating
region that forms in this case is seen to be bounded at both ends by relatively short
boundary regions. All regions have been described separately for relevant values of
the parameters involved, including the distinguished limit Rejε ∼ 1 for the analysis
of the slow fluid motion in the boundary regions. The asymptotic analysis provides
in particular quantitative results of practical interest, including the length of the
recirculating eddy (0.106

√
J/ρa/ν for non-slip flow and 0.131

√
J/ρa/ν for slip flow)

and its associated pressure increment (0.593J/a2 for non-slip flow and 0.318J/a2 for
slip flow). The asymptotic description has been validated through comparisons with
results of integrations of the Navier–Stokes equations for moderately large values of
Rej and 1/ε.

The analysis presented herein has attempted to address in as much generality as
possible the description of confined laminar jets with large expansion ratios. Never-
theless, our work has deliberately ignored some limiting cases that are left for future
work, including the analysis of confined and unconfined jets with Reynolds numbers
of order unity and smaller. Confined jets with Rej � 1 and with exponentially large
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expansion ratios such that ε ∼ exp(−Re2
j /15.28), when momentum decay in the jet

region becomes important, is another limiting case that deserves further attention,
since it provides the transition from the confined jets analysed here to the unconfined
jets of Schneider (1985).

The type of asymptotic treatment presented here can also be useful to address
stability, which should be treated in future work. Also of interest is the extension
of the present work to combustion applications, when a compound jet, formed for
example by a fuel jet and a coaxial air jet, discharges in the chamber. While a number
of papers have been recently published on flame stabilization in axisymmetric free
jet flows (see, e.g., Lee & Chung 1997 and Chen & Bilger 2000), the effect of
confinement on the stabilization mechanism remains unclear. It can be expected that
the composition of the recirculating gases plays an important role in the stability of
the combustion process, an issue to be clarified in future work.

The extension of the analysis to cover turbulent flows also deserves investigation.
The solution of laminar and turbulent free jets is known to be alike, in that, by
replacing ν by an appropriate eddy viscosity, Schlichting analysis is seen to reproduce
well the results of turbulent jets. It can therefore be expected that a similar simple
analysis with slip flow considered at the outer wall applies in confined turbulent jets.
Matching the recirculating length obtained with the boundary-layer approximation
with that found in turbulent flows seems to be an appropriate criterion for the
selection of the eddy viscosity in that case.

The authors are indebted to Professor F. Higuera and to Mr J. D. Mellado for
enlightening discussions on the subject. The work of A. R. and A. L. S. was supported
by the Spanish DGESIC under project number PB98-0142-C04-02, while that of A. L.
was supported by the Spanish CICYT under contract no PB94-0400.

Appendix. Boundary-layer numerical scheme
A pseudo-transient finite-volume scheme was used to integrate the boundary-layer

equations in the main region. The conservation equations, written in conservative form,
and with a time derivative artificially added to the momentum balance equation, were
integrated until convergence to a steady solution was achieved. The time scheme was
a generalized implicit Crank–Nicholson scheme in the radial coordinate and explicit
in the axial coordinate. Second-order centred schemes were used for the spatial
derivatives. This treatment involves the solution of a tridiagonal system of the linear
equations for every axial position and time step.

The method employed to solve the problem is equivalent to that of Brady & Acrivos
(1982) . The pressure gradient is obtained as part of the solution, to conserve mass.
For the n + 1 time step dp/dxn+1 = dp/dxn + δ(dp/dx) and un+1 = u? + δu, and the
time-discretization of the momentum equation is set as

r(u? − un)
∆t

= (1− β)

[
∂

∂r

(
r
∂u?

∂r

)
− ∂(rvnu?)

∂r

]
+β

[
∂

∂r

(
r
∂un

∂r

)
− ∂(rvnun)

∂r

]
− ∂(runun)

∂x
− r dp

dx

n

(A 1)

and δu = −∆t × δ(dp/dx), where the correction of the axial velocity δu = εgo/π −∫ 1

0
2ru? dr is computed from the mass-conservation condition (2.10). Finally the values

of the radial velocity vn+1 are calculated with the continuity equation from the values
of the axial velocity.
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The value of the β-parameter used for the Crank–Nicholson scheme was β = 0.25,
a compromise between β = 0.5, which tends to produce nonlinear instabilities,
and β = 0, corresponding to the full implicit scheme, which yields less accurate
results. The axial convective term determines the time step selected according to
∆t = CFL × ∆xmin/|Umax|, with a CFL = 1 being utilized in the computations. The
results presented below correspond to a grid that is uniformly distributed in the axial
direction with spacing δx = 1.0× 10−3. The radial node distribution is non-uniform,
with minimum spacing δr = 1.03 × 10−3 near the axis and also near the wall. The
convergence criterion selected was that the variation of the pressure gradient along
the axis at each time step was much smaller than the corresponding integration time
step, i.e.

∑ |dp/dxn+1 − dp/dxn| � ∆t.
The numerical method was tested extensively. For instance, the accuracy of the final

numerical solutions was checked by evaluating the integral form of the momentum
equation applied to the recirculating fluid, yielding an error of less than 0.6% for
the calculations shown below. Different modifications were introduced to further
validate the numerical scheme proposed. It was seen that streching of the axial
coordinate does not provide significant improvement. Alternative discretizations that
were tested include a three-level implicit scheme in time for the radial coordinate, and
high-order upwind schemes (Drikais & Tsangaris 1993) for the x-convective term.
These alternative discretizations enable larger time steps in the computation, but no
significant differences were observed in the accuracy of the final results.

To analyse the grid-dependence of the results, the leading-order problem of figure 7,
which was calculated with a grid of NX×NR = 120× 75 nodes, was also computed
with a coarser grid of 60×50 nodes (δx = 2.0×10−3 and minimum δr = 1.65×10−3)
and with a finer grid of 180× 100 nodes (δx = 6.67× 10−4 and minimum δr = 7.45×
10−4), yielding an error in the momentum integral balance equal to 1% and 0.4%,
respectively. The values of the maximum pressure gradient (= 10.419, 10.492, 10.515)
and eddy length (= 0.108, 0.1062, 0.1056) were seen to vary only by a small amount
with grid refinement for the three grids employed, with differences between the two
finest grids being smaller than 0.6%. To study the influence of the time step on the
final results and the stability of the numerical method, different values of the CFL
ranging from 0.5 to 3 were used. Negligible differences in the final results were found
for the same grid.
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